Enhanced Capacitive Deionization Exploiting Novel Functionalized Graphene Oxide Electrodes

نویسندگان

چکیده

In this study, a novel functionalized graphene oxide (fGO) is proposed for application in water desalination. The fGO obtained with simple and scalable method. Pristine GO (2-(acryloyloxy)ethyl)trimethylammonium through two-step functionalization. Then, it mixed activated carbon coated onto metallic current collector. Material characterization techniques such as electron microscopy, thermal analyses, infrared spectroscopy are employed to study the physical chemical structures of materials. This process provides porous electrode useful capacitive deionization (CDI). desalination performance compared bare carbons, showing remarkable improvement. final device reaches value around 17 mg g-1 salt removal, charge efficiency 98%. findings from lay groundwork future research, contributing increasing existing knowledge on materials CDI.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced capacitive deionization of graphene/mesoporous carbon composites.

Capacitive deionization (CDI) with low-energy consumption and no secondary waste is emerging as a novel desalination technology. Graphene/mesoporous carbon (GE/MC) composites have been prepared via a direct triblock-copolymer-templating method and used as CDI electrodes for the first time. The influences of GE content on the textural properties and electrochemical performance were studied. The ...

متن کامل

Ultrahigh Performance of Novel Capacitive Deionization Electrodes based on A Three-Dimensional Graphene Architecture with Nanopores

In order to achieve optimal desalination during capacitive deionization (CDI), CDI electrodes should possess high electrical conductivity, large surface area, good wettability to water, narrow pore size distribution and efficient pathways for ion and electron transportation. In this work, we fabricated a novel CDI electrode based on a three-dimensional graphene (3DG) architecture by constructin...

متن کامل

Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance

As water shortage has become a serious global problem, capacitive deionization (CDI) with high energy efficiency and low cost, is considered as a promising desalination technique to solve this problem. To date, CDI electrodes are mainly made up of porous carbon materials. However, the electrosorption performance obtained by now still cannot meet the demand of practical application. Therefore, a...

متن کامل

Effective Modified Carbon Nanofibers as Electrodes for Capacitive Deionization Process

Carbon materials have the advantages of good electrical conductivity and excellent chemical stability, so many carbon materials have been introduced as electrodes for the capacitive deionization (CDI) process. Due to the low surface area compared to the other nanocarbonaceous materials, CNFs performance as electrode in the CDI units is comparatively low. This problem has been overcome by prepar...

متن کامل

Attractive forces in microporous carbon electrodes for capacitive deionization

The recently developed modified Donnan (mD) model provides a simple and useful description of the electrical double layer in microporous carbon electrodes, suitable for incorporation in porous electrode theory. By postulating an attractive excess chemical potential for each ion in the micropores that is inversely proportional to the total ion concentration, we show that experimental data for ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced materials and technologies

سال: 2022

ISSN: ['2365-709X']

DOI: https://doi.org/10.1002/admt.202101513